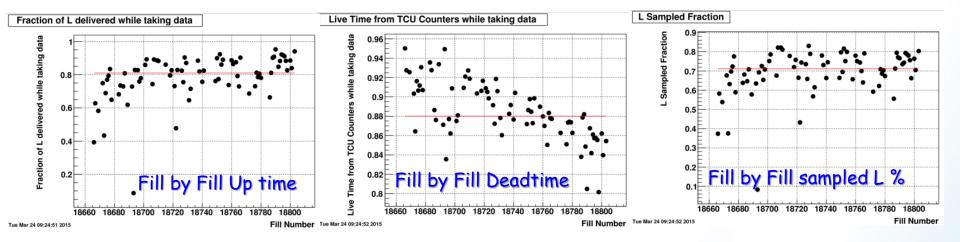
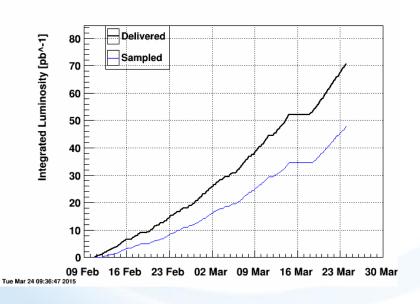

STAR REQUEST TO EXTEND THE PP RUNNING BY TWO WEEKS (OR 10 DAYS)

Bill Christie
For the STAR Collaboration
MARCH 24, 2015

BROOKHAVEN NATIONAL LABORATORY

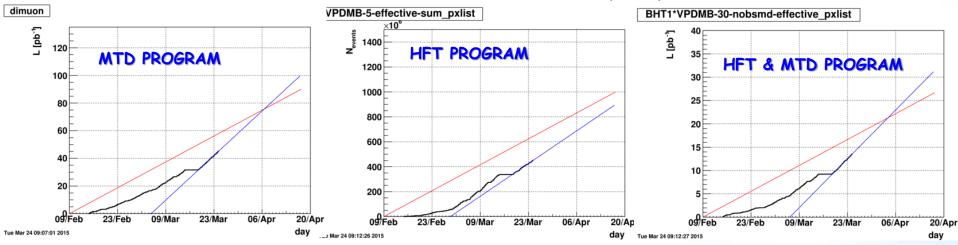
a passion for discovery

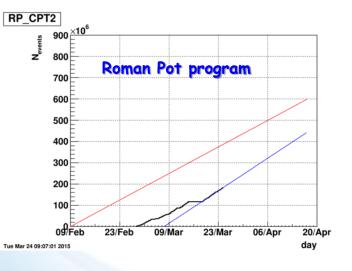

STAR IS RUNNING MULTIPLE PP PHYSICS PROGRAMS


Ö	RUNNING [to F	RCF]			1608	3018						produ	ction_pp	200trar	ns_2015	[РНҮ	sics]	Run sta Duratio	_	1ar 24 08:4 ys, 0 hr, 23		_
STAR DAG Menu Monitoring	In progress					for Phy ON (436n	sics n) [Keep Bo	eam]									Blue Yellow TCU Cl		eV, 21048	ions, Physic ions, Physic		_
Rate Charts Current Rates LED Status Slow Controls	Trigger RP_SD	DAQ Evts	DAQ Hz	L0 Evts 8379	_	Sca Hz 722208.7	Sca Dead	Built 8377	Xpress 8377		Err 1	Trigger BHT1*VPDMB-30	DAQ Evts	DAQ Hz	L0 Evts	L0 Hz	Sca Hz	Sca Dead	Built 199662	Xpress	Abt 0	Err 0
Current RunLog Today's ShiftLog Critical Support	RP_RPZMU	32961 5580	22	32974 5584	24	83066.1 5	22 %	32960 5580	32960 5580	0	1	BHT0*BBCMB BHT1*BBCMB	1929 1835	1	1930 1836	1	10159 1637	11 % 11 %	1929 1835	0	0	0
BERT TPC Temperature TPC Anode Scan TPC DAQ10K	RP_RPZE RP_RP2MU RP_RP2E	3247 6046 6221	2	3249 6048 6223	2	4 7 8	25 % 29 % 25 %	3247 6046 6221	3247 6046 6221	0	0	BHT2*BBCMB singlemuon-5 emuon-30	100959 48794 35026	61 38 23	100994 48810 35043	64 37 29	76 411 37	8 % 12 % 11 %	100959 48794 35026	0 48794 35026	0	0
DAQ Plots Status	RP_CPT2 RP_ET	313386 57505	222 37	313509 57513	40	1457 154536.1	20 % 18 %	313383 57504	313383 57504	0	3	dimuon bbc-mtdcosmic	106804 11544	66 8	106831 11548	62 9	89 1048	10 % 10 %	106803 11544	106803 11544		1
RUNNING	RP_CP RP_Zerobias RP_CPEI	42167 1156 9336	26 1 6	42185 1156 9339	31 1 6	174302.2 9383145 940	22 % 22 % 22 %	42165 1155 9336	42165 1155 9336	0 0	1 0	FMS-sm-bs1 FMS-sm-bs2 FMS-sm-bs3	71966 193254 188594	47 127 123	71978 193276 188610	51 124 116	3162 307 123	8 % 7 % 8 %	71966 193253 188594	71966 193253 188594	0	0 1 0
16083018 Auto Update	BHT1*VPDMB-30-nobsmd JP2 JP2-bsmd	221362 272591 246336	168 207 189		238	184 256 256	10 % 10 % 17 %	221362 272587 246332	0	0	0	FMS-lg-bs1 FMS-lg-bs2 FMS-lg-bs3	72292 139761 230211	54 103 179	72301 139776 230240	51 98 186		8 % 8 % 10 %	72292 139761 230211	72292 139761 230211	0	0
5 s Now	AJP EHTO	4557 30433	4 26	4559	3	253 32	15 % 9 %		0	0	0	FMS-DIBS FMS-JP2	125270 135072	88 105	125285 135081	96 100	115	10 % 10 % 9 %	125269 135072	125269 135072	0	1
Run Playback	JP1 JP2*L2JetHigh EHT0*EJP1*L2Egamma	400227 272591 25923	275 207 23		238	1790 256 28	21 % 10 % 11 %	400225 272587 25923	0	0	2 4 0	FMS-JP1 FMS-JP0 FMS-DiJP	383609 76011 37273	262 56 19	383663 76021 37277	275 52 21	711 7270 32	9 % 8 % 19 %	383609 76010 37273	383609 76010 37273	0	0 1 0
< >	BHT2*BJP1*L2Bgamma VPDMB-5-trgonly	87842 4968	49	87874 4968	54 3	76 25675	14 % 8 %	87842		0	0	FMS-LED VPDMB-novtx	1242 1809	1 1	1242 1810	1	1 423078.4	0 % 11 %	1242 1808	1242	-	0
online 3:3	VPDMB-5-ssd BBCMB BHT0*VPDMB-5	636837 1031 24342	444 1 20	1031	1	25675 1195761.1 200	56 % 12 % 8 %	636835 1030 24342	0	0 0	1 0	ZDCMB-trgonly VPDMB-30 ZEROBIAS	2944 1239 978	2 1 2	2944 1239 979	1	2939 150921.1 9383145		2944 1238 977	0 0 977	0	0 1 1
												ALL	3483182	2528	3483558	2549	9383145	0 %	3482512	2980505	0	23

- Running 48 simultaneous Triggers
- Unpolarized measurements for HI comparison data
- Transverse pp program
- Longitudinal pp program
- Roman Pot program

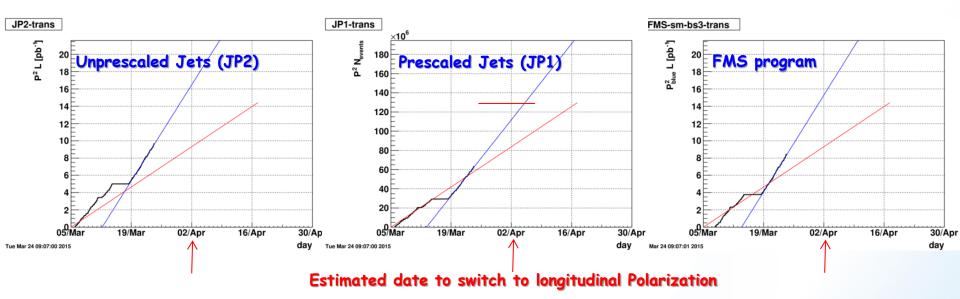
STAR IS RUNNING VERY WELL




- STAR uptime is very good
- Deadtime running about 15%
- Sampled luminosity fraction very good

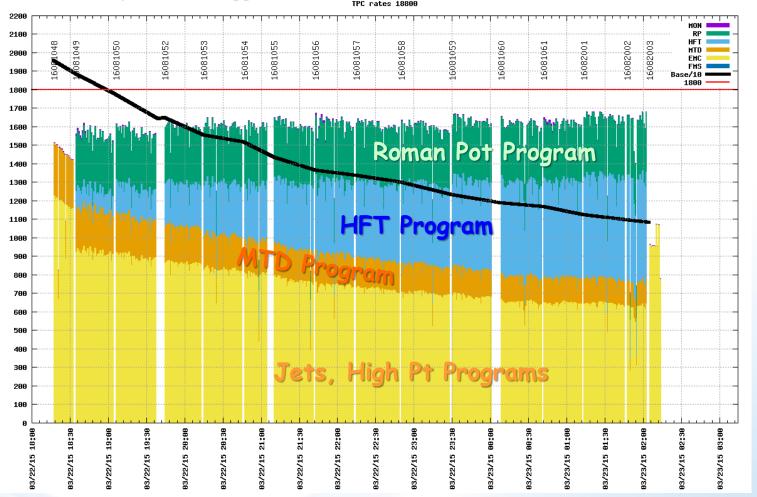
CURRENT STATUS (UNPOLARIZED PROGRAM)

UNPOLARIZED PHYSICS PROGRAMS ARE PROGRESSING pretty WELL



- To reach our HFT data set goals, without an extension to the pp run, we'll have to cut into our Transverse pp data set goals (JP1), as well as our Roman Pot goal.
- Roman Pot goal (set during run) won't be met.

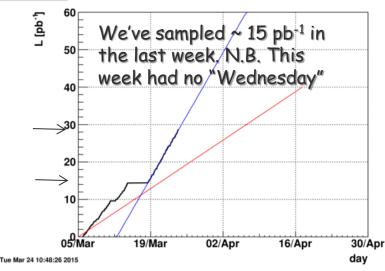
CURRENT STATUS (TRANSVERSE PP PROGRAM)



- Due to excellent Collider performance STAR running efficiency, the Transverse data set goals are progressing very well. Assuming continued good performance, estimated date for switching to longitudinal polarization is either coming out of the April 1st access, or 8 am Thursday April 2nd.
- One data set goal that needs help to reach goal by this date is Jp1. Constrained by TPC rate limit and other program needs.

BANDWIDTH CONSTRAINTS

- Trigger Bandwidth constraint that we can take no more than 3 kevts per second
- TPC Bandwidth constraint that we can't take more than 1800 Hz of events with the TPC
- We've tuned prescaled triggers to maintain both total event, and TPC rates close to limits.



Without decision on extension we'll have to cut further into Transverse JP1 data set goal, and Roman Pots goal.

ESTIMATE OF IMPACT OF 10 DAY EXTENSION

•	This past	week h	has been	extraordinarily
	good.			

 An reasonable estimate is that we'll maintain 6/7 ths of this rate (account for "Wednesdays") for the remainder of the pp running. This gives about 12.8 to 13 pb-1/wk.

Longitudinal goal is 50 pb-1 with 60% polarization. FOM = 6.5 pb^{-1}

			April			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	Switch to Longitudnal 8 am 2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	Current pp end date 17	18
19	20	21	22	23	24	25
	End pp run					
26	27	28	29	30		

- If we switch on April 2nd, and run until Monday April 27th (10 day extension), and both RHIC and STAR maintain good performance, the estimate is that we'll accumulate ~ 44 pb⁻¹.
- If we get ~ 40 pb⁻¹, this will be double our Run 9 data set FOM, achieving the 200 GeV pp Delta G goals.
- See RHIC Spin White paper for physics impact.

COMMENTS ON P-A RUNNING WITH 10 DAY PP EXTENSION

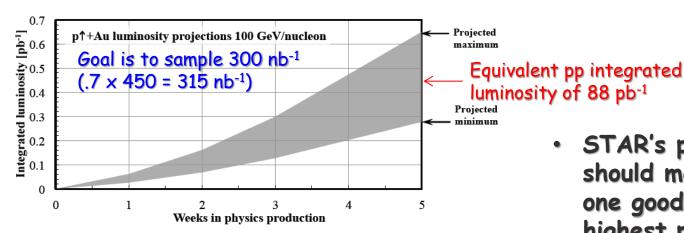
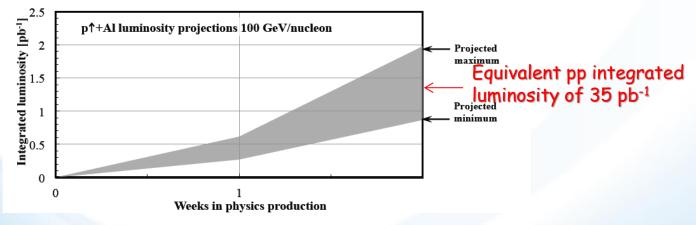



Figure 4: Projected minimum and maximum integrated luminosities for p↑+Au at 100 GeV/nucleon assuming linear weekly luminosity ramp-up in 4 weeks. The average store polarization of the proton beam expected to be close to the polarization achieved in the 100 GeV p↑+p↑ run.

p↑+Al at 100 GeV/nucleon – Operation in this mode is similar to p↑+Al at 100 GeV/nucleon with some modifications to the lattice. The expected Al intensity has the same charge per bunch as was demonstrated with Cu ions in Run-12.

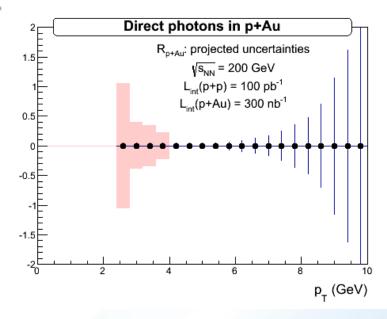
 Consider a second p-A species only if p-Au goals achieved.

SUMMARY

- Both RHIC and STAR are running very well.
- We estimate that, with a 10 day extension to the pp run, that we'll meet all of our unpolarized pp data set goals, all of our Transverse data set goals (Jp1 on edge), and get 80+% of our longitudinal data set goals.
- If we reach 80+% of our longitudinal data set goals, this in combination with our earlier pp data will achieve the 200 GeV Delta G measurement goals as listed in the RHIC Spin White paper.
- If we don't get this extension, we'll have to sacrifice part of our transverse spin goals, and our roman pot goals, to achieve our HFT goals. We'd achieve ~50% of our longitudinal spin goals.
- As far as the impact of the extension on the p-A program, STAR's
 position is that we have to accumulate a good p-Au data set before any
 consideration of a second p-A species.
- If we can't make this decision today, in an effort to reach our HFT goals, we request that the store lengths be increased immediately by 1 hour.

ADDITIONAL MATERIAL

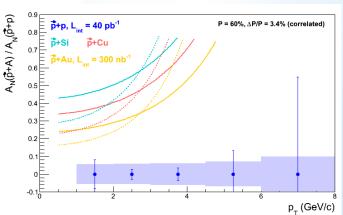
PAC RECOMMENDATIONS FOR RUN 15


Within a 12-week p+p running scenario during Run 15, the STAR collaboration proposed a six-week run of p+p collisions with longitudinal polarization to improve the precision in measurements of the double-spin asymmetry ALL in inclusive jet and coincident di-jet production. These measurements would provide a definitive answer about the gluon contribution to the total spin of the proton if the current central value for Δ g holds. Based on present day knowledge, the PAC expresses a preference for the improved $\Delta g(x)$ measurement relative to the proposed transverse physics measurements.

The PAC recommends the 9 weeks of p+p running with the same priority as the 5 weeks of p+Au running. Both of these programs are recommended with higher priority than the two-week run with p+Si collisions.

PA PHYSICS GOALS

 \square R_{pA} for direct photons \rightarrow g(x,Q²) in A



□ Saturation physics:

R_{pA} for A_N for πι⁰

Di-hadron correlations for different p_{trig} > 2 GeV and p_{trig} > 3 GeV to cross "saturation line"

Remember: at η>2 c.s. 1/p_t⁶

